Image from Google Jackets

China's Unconventional Nationwide CO<sub>2</sub> Emissions Trading System: The Wide-Ranging Impacts of an Implicit Output Subsidy / Lawrence H. Goulder, Xianling Long, Jieyi Lu, Richard D. Morgenstern.

By: Contributor(s): Material type: TextTextSeries: Working Paper Series (National Bureau of Economic Research) ; no. w26537.Publication details: Cambridge, Mass. National Bureau of Economic Research 2019.Description: 1 online resource: illustrations (black and white)Subject(s): Online resources: Available additional physical forms:
  • Hardcopy version available to institutional subscribers
Abstract: China is planning to implement the largest CO<sub>2</sub> emissions trading system in the world. To reduce emissions, the system will be a tradable performance standard (TPS), an emissions pricing mechanism that differs significantly from the emissions pricing instruments used in other countries, such as cap and trade (C&T) and a carbon tax. We employ matching analytically and numerically solved models to assess the cost-effectiveness and distributional impacts of China's forthcoming TPS for achieving CO<sub>2</sub> emissions reductions from the power sector.Abstract: We find that the TPS's implicit subsidy to electricity output has wide-ranging consequences for both cost-effectiveness and distribution. In terms of cost-effectiveness, the subsidy disadvantages the TPS relative to C&T by causing power plants to make less efficient use of output-reduction as a way of reducing emissions (indeed, it induces some generators to increase output) and by limiting the cost-reducing potential of allowance trading. In our central case simulations, TPS's overall costs are about 47 percent higher than under C&T. At the same time, the TPS has distribution-related attractions. Through the use of multiple benchmarks (maximal emission-output ratios consistent with compliance), it can serve distributional objectives. And because it yields smaller increases in electricity prices than a comparable C&T system, it implies less international emissions leakage.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Home library Collection Call number Status Date due Barcode Item holds
Working Paper Biblioteca Digital Colección NBER nber w26537 (Browse shelf(Opens below)) Not For Loan
Total holds: 0

December 2019.

China is planning to implement the largest CO<sub>2</sub> emissions trading system in the world. To reduce emissions, the system will be a tradable performance standard (TPS), an emissions pricing mechanism that differs significantly from the emissions pricing instruments used in other countries, such as cap and trade (C&T) and a carbon tax. We employ matching analytically and numerically solved models to assess the cost-effectiveness and distributional impacts of China's forthcoming TPS for achieving CO<sub>2</sub> emissions reductions from the power sector.

We find that the TPS's implicit subsidy to electricity output has wide-ranging consequences for both cost-effectiveness and distribution. In terms of cost-effectiveness, the subsidy disadvantages the TPS relative to C&T by causing power plants to make less efficient use of output-reduction as a way of reducing emissions (indeed, it induces some generators to increase output) and by limiting the cost-reducing potential of allowance trading. In our central case simulations, TPS's overall costs are about 47 percent higher than under C&T. At the same time, the TPS has distribution-related attractions. Through the use of multiple benchmarks (maximal emission-output ratios consistent with compliance), it can serve distributional objectives. And because it yields smaller increases in electricity prices than a comparable C&T system, it implies less international emissions leakage.

Hardcopy version available to institutional subscribers

System requirements: Adobe [Acrobat] Reader required for PDF files.

Mode of access: World Wide Web.

Print version record

There are no comments on this title.

to post a comment.

Powered by Koha