Using Aggregated Relational Data to Feasibly Identify Network Structure without Network Data / Emily Breza, Arun G. Chandrasekhar, Tyler H. McCormick, Mengjie Pan.
Material type:![Text](/opac-tmpl/lib/famfamfam/BK.png)
- Hardcopy version available to institutional subscribers
Item type | Home library | Collection | Call number | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
Working Paper | Biblioteca Digital | Colección NBER | nber w23491 (Browse shelf(Opens below)) | Not For Loan |
June 2017.
Social network data is often prohibitively expensive to collect, limiting empirical network research. Typical economic network mapping requires (1) enumerating a census, (2) eliciting the names of all network links for each individual, (3) matching the list of social connections to the census, and (4) repeating (1)-(3) across many networks. In settings requiring field surveys, steps (2)-(3) can be very expensive. In other network populations such as financial intermediaries or high-risk groups, proprietary data and privacy concerns may render (2)-(3) impossible. Both restrict the accessibility of high-quality networks research to investigators with considerable resources.
We propose an inexpensive and feasible strategy for network elicitation using Aggregated Relational Data (ARD) - responses to questions of the form "How many of your social connections have trait k?" Our method uses ARD to recover the parameters of a general network formation model, which in turn, permits the estimation of any arbitrary node- or graph-level statistic. The method works well in simulations and in matching a range of network characteristics in real-world graphs from 75 Indian villages. Moreover, we replicate the results of two field experiments that involved collecting network data. We show that the researchers would have drawn similar conclusions using ARD alone. Finally, using calculations from J-PAL fieldwork, we show that in rural India, for example, ARD surveys are 80% cheaper than full network surveys.
Hardcopy version available to institutional subscribers
System requirements: Adobe [Acrobat] Reader required for PDF files.
Mode of access: World Wide Web.
Print version record
There are no comments on this title.