000 | 03522nam a22005175i 4500 | ||
---|---|---|---|
001 | 978-3-658-12596-7 | ||
003 | DE-He213 | ||
005 | 20210420091719.0 | ||
007 | cr nn 008mamaa | ||
008 | 160208s2016 gw | s |||| 0|eng d | ||
020 |
_a9783658125967 _9978-3-658-12596-7 |
||
024 | 7 |
_a10.1007/978-3-658-12596-7 _2doi |
|
050 | 4 | _aHB172.5 | |
072 | 7 |
_aKCB _2bicssc |
|
072 | 7 |
_aBUS039000 _2bisacsh |
|
072 | 7 |
_aKCB _2thema |
|
072 | 7 |
_aKCBM _2thema |
|
082 | 0 | 4 | _a339 |
100 | 1 |
_aKömm, Holger. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aForecasting High-Frequency Volatility Shocks _h[electronic resource] : _bAn Analytical Real-Time Monitoring System / _cby Holger Kömm. |
250 | _a1st ed. 2016. | ||
264 | 1 |
_aWiesbaden : _bSpringer Fachmedien Wiesbaden : _bImprint: Springer Gabler, _c2016. |
|
300 |
_aXXIX, 171 p. 19 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
505 | 0 | _aIntegrated Volatility -- Zero-inflated Data Generation Processes -- Algorithmic Text Forecasting. | |
520 | _aThis thesis presents a new strategy that unites qualitative and quantitative mass data in form of text news and tick-by-tick asset prices to forecast the risk of upcoming volatility shocks. Holger Kömm embeds the proposed strategy in a monitoring system, using first, a sequence of competing estimators to compute the unobservable volatility; second, a new two-state Markov switching mixture model for autoregressive and zero-inflated time-series to identify structural breaks in a latent data generation process and third, a selection of competing pattern recognition algorithms to classify the potential information embedded in unexpected, but public observable text data in shock and nonshock information. The monitor is trained, tested, and evaluated on a two year survey on the prime standard assets listed in the indices DAX, MDAX, SDAX and TecDAX. Contents • Integrated Volatility • Zero-inflated Data Generation Processes • Algorithmic Text Forecasting Target Groups • Teachers and students of economic science with a focus on financial econometrics< • Executives and consultants in the field of business informatics and advanced statistics About the Author Dr. Holger Kömm is research associate at the chair of statistics and quantitative methods in the economics & business department of the Catholic University Eichstätt-Ingolstadt. . | ||
650 | 0 | _aMacroeconomics. | |
650 | 0 | _aEconomic policy. | |
650 | 0 | _aEconomic theory. | |
650 | 1 | 4 |
_aMacroeconomics/Monetary Economics//Financial Economics. _0https://scigraph.springernature.com/ontologies/product-market-codes/W32000 |
650 | 2 | 4 |
_aR & D/Technology Policy. _0https://scigraph.springernature.com/ontologies/product-market-codes/W43000 |
650 | 2 | 4 |
_aEconomic Theory/Quantitative Economics/Mathematical Methods. _0https://scigraph.springernature.com/ontologies/product-market-codes/W29000 |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783658125950 |
776 | 0 | 8 |
_iPrinted edition: _z9783658125974 |
856 | 4 | 0 | _uhttps://s443-doi-org.br.lsproxy.net/10.1007/978-3-658-12596-7 |
912 | _aZDB-2-ECF | ||
912 | _aZDB-2-SXEF | ||
942 |
_2ddc _cEBK |
||
999 |
_c374162 _d332724 |